Ora cosa dicono le mie regole #1 e #2 a proposito della mortalità (e di molte cose ancora)?:
Si muore di più nel giorno del compleanno e nei 20 giorni prima e dopo dello stesso che in qualunque altro giorno dell’anno.
Considerando da due giorni prima a due giorni dopo il compleanno, ci troviamo o no nel giorno del compleanno o nei 20 giorni prima o dopo dello stesso? Sì!
Allora le mie due regole sono state validate dalla Scienza Ufficiale e tutto il resto sono soltanto chiacchiere da parte di chi in tutta la propria vita non potrà neanche dimostrare che l’acqua è liquida.
Dal blog di Discepolo del 30.04.13
Ma che razza di ragionamento è questo signor Discepolo?
I ricercatori svizzeri hanno trovato che nel giorno del compleanno ci sarebbe un 13,8% in più di decessi rispetto alla media, e forse anche un eccesso di morti nel giorno precedente e seguente il compleanno, ma NON hanno trovato un eccesso nei 20 giorni che precedono e seguono il compleanno.
Lei come fa a dire che le statistiche svizzere confermano entrambe le sue regole?
Forse le statistiche svizzere confermano la regola riguardante il compleanno, ma smentiscono la regola riguardante i 20 giorni prima e i 20 giorni dopo.
Discepolo ha ritenuto di dover spiegare le sue regole, perché uno dei suoi seguaci, aveva scritto che i giorni in cui si possono verificare degli eventi importanti nella vita di un soggetto, sono quelli che precedono di 20-30 giorni il giorno del compleanno e quelli che lo seguono di 20-30 giorni.
Se la logica di Discepolo fosse valida, allora si potrebbe dire che anche la regola del suo allievo è stata confermata dai ricercatori svizzeri, perché il giorno del compleanno sicuramente fa parte dei 30 giorni che lo precedono e che lo seguono.
Bisogna comprendere che i ricercatori svizzeri, non hanno fatto una ricerca riguardante in modo particolare il giorno del compleanno, ma hanno analizzato la mortalità di tutti i 365 giorni dell'anno.
I risultati della ricerca sono stati che nel giorno del compleanno si verifica un eccesso significativo dei decessi, mentre nei restanti 364 giorni. o forse 362, non si verifica alcun eccesso significativo della mortalità.
Non è chiaro se i ricercatori svizzeri hanno trovato un eccesso anche sul giorno precedente e seguente il compleanno, perché nella loro relazione sulla statistica non viene riportato il numero delle morti per ciascun giorno dell'anno, ma solo il grafico che rappresenta questi numeri. Dalla sola visione del grafico, non è possibile stabilire se l'eccesso di morti del giorno del compleanno, riguarda anche il giorno prima e dopo il compleanno. Ma di sicuro NON si verifica un eccesso nei 20 giorni che precedono e che seguono il giorno del compleanno.
Se esistesse un effetto su questi 40 giorni a cavallo del giorno del compleanno, questo dovrebbe risultare dal grafico disegnato dai ricercatori svizzeri, in cui dovrebbe apparire una curva che inizia 20 giorni prima del compleanno, raggiunge il suo massimo nel giorno del compleanno, e decresce fino al ventesimo giorno dopo il compleanno.
Questa curva però non c'è nel grafico elaborato dai ricercatori svizzeri e quindi la loro statistica smentisce almeno una delle regole di Discepolo.
Discepolo accetta i risultati che gli danno ragione, ma ignora i risultati che gli danno torto.
La cosa non mi meraviglia, perché ha fatto lo stesso anche con la statistica sulla ereditarietà astrale, quando dopo aver ripetuto per 100 volte l'operazione di mischiare le famiglie, ha trovato che c'erano solo due casi che confermavano il risultato precedente e 98 casi che lo smentivano. Anche in quella occasione, Discepolo ha accettato i due risultati favorevoli e ha ignorato i 98 risultati contrari.
Eppure Discepolo in questo suo post dello scorso 30 aprile, si era dilungato a parlare di grafici, spiegando che ce ne sono alcuni che mostrano un andamento "quadratico" ed altri che mostrano una curva, quando descrivono un fenomeno che inizia in un certo momento, raggiunge poi una culminazione, e decresce lentamente fino a cessare.
Questa curva però non c'è nella statistica dei ricercatori svizzeri e se Discepolo fosse realmente un ricercatore dovrebbe chiedersene il perché.
Ma Discepolo non è un ricercatore, e vorrebbe appuntarsi in petto delle medaglie, pur non meritandole.
Discepolo prosegue a scrivere, tirando in ballo gli studi di Didier Castille, ma che c'entrano gli studi di Didier Castille?
Didier Castille ha compiuto una ricerca analoga a quelli dei ricercatori svizzeri, e pare che abbia trovato ciò che afferma Discepolo.
Discepolo potrebbe dire che i risultati della statistica di Didier Castille confermano le sue regole, ma non può dire che le sue regole sono state confermate dai ricercatori svizzeri.
Discepolo vede delle connessioni tra le statistiche svizzere, quelle di Didier Castille sulla mortalità e sulle coppie sposate, e le statistiche che non sono ancora state fatte, ma che un giorno potrebbero confermare le sue regole.
Questo secondo lui sarebbe un modo di fare astrologia uraniana, ossia intelligente.
A me pare che tirare il ballo delle statistiche che non sono ancora state fatte, a conferma delle sue regole sia eccessivo, però, a parte questo, credo che effettivamente ci siano delle interessanti analogie tra le mie statistiche sul matrimonio (non pubblicate), le statistiche di Didier Castille sempre sul matrimonio e le statistiche di Didier Castille riguardanti la mortalità.
La curva a campana nel grafico della mia statistica sui matrimoni effettivamente c'è, e termina proprio 18-20 giorni dopo.
Le persone il cui giorno del compleanno differisce meno di 20 giorni si sposano più frequentemente della media. Questo effetto è tanto più forte quando è minore la differenza tra i giorni del compleanno dei coniugi.
Questo risulta sia dalla statistica di Didier Castille sulla popolazione francese che dalla mia statistica sulla popolazione inglese. Ma qui si parla di matrimoni cosa ben diversa dalla mortalità.
Didier Castille credo però che abbia fatto un'altra statistica proprio sulla mortalità, di cui non ho trovato una relazione dettagliata in rete. Credo che secondo Didier Castille anche nella sua statistica sulla mortalità sia presente la curva che invece manca nella statistica dei ricercatori svizzeri.
Sia Didier Castille che i ricercatori svizzeri concordano sul fatto che si muore un po' più spesso nel giorno del compleanno, però secondo Didier Castille si muore un po' più spesso anche nei giorni vicini al compleanno, mentre per i ricercatori svizzeri non è cosi'.
Chi ha ragione?
Io questo non lo so.
Sarebbe interessante cercare di scoprirlo, ma certamente questo non può farlo chi decide di voler ignorare la discrepanza per appuntarsi (da solo) una medaglia sul petto.
Di sicuro Discepolo non potrebbe affermare che la statistica dei ricercatori confermano le sue regole, perché al massimo potrebbero confermare la regola n.2 ma non la n.1.
La regola n.1 è smentita dalla ricerca svizzera, perché non si muore più frequentemente della media nei 20 giorni che precedono e seguono il compleanno, ma esclusivamente nel giorno del compleanno e forse nel giorno prima e in quello dopo.